An easy-to-use single-molecule speckle microscopy enabling nanometer-scale flow and wide-range lifetime measurement of cellular actin filaments.

نویسندگان

  • Sawako Yamashiro
  • Hiroaki Mizuno
  • Naoki Watanabe
چکیده

Single-molecule speckle (SiMS) microscopy has been a powerful method to analyze actin dynamics in live cells by tracking single molecule of fluorescently labeled actin. Recently we developed a new SiMS method, which is easy-to-use for inexperienced researchers and achieves high spatiotemporal resolution. In this method, actin labeled with fluorescent DyLight dye on lysines is employed as a probe. Electroporation-mediated delivery of DyLight-actin (DL-actin) into cells enables to label cells with 100% efficiency at the optimal density. DL-actin labels cellular actin filaments including formin-based structures with improved photostability and brightness compared to green fluorescent protein-actin. These favorable properties of DL-actin extend time window of the SiMS analysis. Furthermore, the new SiMS method enables nanometer-scale displacement analysis with a low localization error of ±8-8.5 nm. With these advantages, our new SiMS microscopy method will help researchers to investigate various actin remodeling processes. In this chapter, we introduce the methods for preparation of DL-actin probes, electroporation to deliver DL-actin, the SiMS imaging and data analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales

Speckle microscopy directly visualizes the retrograde actin flow, which is believed to promote cell-edge protrusion when linked to focal adhesions (FAs). However, it has been argued that, due to rapid actin turnover, the use of green fluorescent protein-actin, the lack of appropriate analysis algorithms, and technical difficulties, speckle microscopy does not necessarily report the flow velocit...

متن کامل

Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution

Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of sing...

متن کامل

An Infrared Actin Probe for Deep-Cell Electroporation-Based Single-Molecule Speckle (eSiMS) Microscopy

Single-molecule speckle (SiMS) microscopy is a powerful method to directly elucidate biochemical reactions in live cells. However, since the signal from an individual fluorophore is extremely faint, the observation area by epi-fluorescence microscopy is restricted to the thin cell periphery to reduce autofluorescence, or only molecules near the plasma membrane are visualized by total internal r...

متن کامل

Actin turnover–dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing

Actin forms the dendritic nucleation network and undergoes rapid polymerization-depolymerization cycles in lamellipodia. To elucidate the mechanism of actin disassembly, we characterized molecular kinetics of the major filament end-binding proteins Arp2/3 complex and capping protein (CP) using single-molecule speckle microscopy. We have determined the dissociation rates of Arp2/3 and CP as 0.04...

متن کامل

Periodic patterns of actin turnover in lamellipodia and lamellae of migrating epithelial cells analyzed by quantitative Fluorescent Speckle Microscopy.

We measured actin turnover in lamellipodia and lamellae of migrating cells, using quantitative Fluorescent Speckle Microscopy. Lamellae disassembled at low rates from the front to the back. However, the dominant feature in their turnover was a spatially random pattern of periodic polymerization and depolymerization moving with the retrograde flow. Power spectra contained frequencies between 0.5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods in cell biology

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2015